uiltin d: &**kwargs
preserve some order

.

thon 3.6+

" The C based Python 3.6+ reference implementation and PyPy 4+ just do it, and so can {{YourOtherImplementation}} @

© 2017 by Stefan (dilettant) Hagen under MIT License 1


https://www.python.org/downloads/release/python-362/
https://www.python.org/downloads/release/python-362/
https://www.python.org/downloads/release/python-362/
https://www.python.org/downloads/release/python-362/
https://morepypy.blogspot.nl/2015/01/faster-more-memory-efficient-and-more.html
https://stefan-hagen.website/
https://shagen.mit-license.org/

and

— Real world 'printed’ dictionaries expose sorted keys
— Topic of talk is stable ordering and (not )
— Focus is on ebservable behavior of keys (and sets)

— I key order preserved (by underlying hash mapping),

thoughtful creation of a dict say d may allow:
— : for k in d.keys(): # &
— : for k in reversed(tuple(d)): #©
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First Learn, Second Follow, Third " ey

Common sense facts: Base of Culture or only Hear Say?
® One such fact learned the hard way by most of us is:

The native Python dict does preserve insert order.

& ...dict, set and *¥*kwargs ( implemented).

= "Preserving the order of **kwargs in a
function” ® so, we now can have our cake and eat it t0o?
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Question: : "¥¥kwargs order” - Rely on it or not?

— Use cases (from PEP 468):
— print out key:value pairs in CLI output
— map semantic names to column order in a CSV

— serialise attributes and elements in particular
orders in XML

— serialise map keys in particular orders in human
readable formats like JSON and YAML.
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Question: - Rely on it or not?

— The dict type now uses " " representation [...]

— Memory usage between 20% - 25% smaller <«

— The order-preserving aspect [...] considered an
implementation detail and should not be relied ...

— This may change in the future, but it is desired [...]
a few releases before changing the language spec
to mandate order-preserving semantics for all
current and future Python implementations |...] .
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(1/7) © Explore the good news and our bright future

Short interactive session - you're free to ignore &:

Python 3.6.2 (default, Jul 17 201/, 16:44:47)
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> d = {'foo': 1, 'bar': 2, 'baz': 3}
>>> for k, v in d.items():

print(k, "->", v)

# For now an implementation detail ;-)
foo -> 1
bar -> 2
baz -> 3
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(2/7) Update a key's value

[teration shows, value update preserves key position:

>>> d[ 'foo'] = 42
>>> for k, v in d.items():
print(k, "->", v)

foo -> 42
bar -> 2
baz -> 3


https://docs.python.org/3.6/library/stdtypes.html#dict
https://stefan-hagen.website/
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(3/7) Delete the key (position now taken from next!)

>>> del d[ 'foo']
>>> for k, v in d.items():
print(k, "->", v)

bar -> 2
baz -> 3
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(4/7) "Re-Insert” (kind of) removed key with some value

>>> d[ "foo'] = -1
But now 'foo: -1'is appended (insert order!), so:

>>> for k, v in d.items():
print(k, "->", v)

bar -> 2
baz -> 3
foo -> -1

10
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(5/7) Short dirty check to show off PEP 468

>>> # Remember: **d — bar=2, baz=3, foo=-1
>>> print(¥*¥d) # HACK A DID ACK

Traceback (most recent call last):
File '"<stdin>", line 1, in <module>

TypeError: 'bar' is an invalid keyword argument for this function
NAAN

— & Order preserved; Python 2.7.13 on OS X raises:

Traceback (most recent call last):
File '"<stdin>", line 1, in <module>

TypeError: 'baz' is an invalid keyword argument for this function
VAVAVAN
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(6/7) Some other function exposing PEP 468 behavior

>>> def a stack(pos, *args, **kwargs):
"""Now for something completely different ..."""
for k in reversed(tuple(kwargs)::
print(k, "->", kwargs[k])

>>> # Remember: **d — bar=2, baz=3, foo=-1
>>> a stack(True, **d)

foo -> -1
baz -> 3
bar -> 2
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(7/7) The builtin set now also preserves order

>>> # Remember: **d — bar=2, baz=3, foo=-1
>>> s = set(d.keys()) # Using set constructor
>>> print(tuple(s))

('bar', 'baz', 'foo') # Also an implementation detail ;-)

>>> s = {'bar', 'baz', 'foo'} # Fresh set literal
>>> print(tuple(s))

('bar', 'baz', 'foo') # Dito implementation detail ;-)
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What gives?

... still not clear what this means,

but will notice - as time goes by ...

Any questions?

Thoughts?

-- Thanks!
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