uiltin d: &**kwargs
preserve some order

.

thon 3.6+

" The C based Python 3.6+ reference implementation and PyPy 4+ just do it, and so can {{YourOtherImplementation}} @

© 2017 by Stefan (dilettant) Hagen under MIT License 1

https://www.python.org/downloads/release/python-362/
https://www.python.org/downloads/release/python-362/
https://www.python.org/downloads/release/python-362/
https://www.python.org/downloads/release/python-362/
https://morepypy.blogspot.nl/2015/01/faster-more-memory-efficient-and-more.html
https://stefan-hagen.website/
https://shagen.mit-license.org/

and

— Real world 'printed’ dictionaries expose sorted keys
— Topic of talk is stable ordering and (not)
— Focus is on ebservable behavior of keys (and sets)

— I key order preserved (by underlying hash mapping),

thoughtful creation of a dict say d may allow:
— : for k in d.keys(): # &
— : for k in reversed(tuple(d)): #©

© 2017 by under

https://en.wikipedia.org/wiki/Stack_(abstract_data_type%29
https://en.wikipedia.org/wiki/Queue_(abstract_data_type%29
https://pypi.python.org/pypi/sortedcontainers/
https://en.wikipedia.org/wiki/If_and_only_if
https://en.wikipedia.org/wiki/Conditional_(computer_programming%29
https://en.wikipedia.org/wiki/Queue_(abstract_data_type%29
https://en.wikipedia.org/wiki/Stack_(abstract_data_type%29
https://stefan-hagen.website/
https://shagen.mit-license.org/

"‘. l|r'P'"v'J - L]

B P ® ’ .) -
- “’ \. | '}'.'.. ".- .d' c_-
o N A .,L- . _

Proverbs / Common sense fac s’ e learn whe

T

You can't have your cake and eat it ¥

anted? Like: &

-—

of the "Local Brain Sales Rep." ... or another variant of:
= blocking our views through artificial rules?
e ceae - ARE RS o TN

R 2 . . .
- © 2017by under

-

https://en.wikipedia.org/wiki/Proverb
https://en.wikipedia.org/wiki/You_can%27t_have_your_cake_and_eat_it
https://en.wikipedia.org/wiki/You_can%27t_have_your_cake_and_eat_it
https://en.wikipedia.org/wiki/You_can%27t_have_your_cake_and_eat_it
https://en.wikipedia.org/wiki/You_can%27t_have_your_cake_and_eat_it
https://en.wikipedia.org/wiki/You_can%27t_have_your_cake_and_eat_it
https://en.wikipedia.org/wiki/Buy_one,_get_one_free
https://stefan-hagen.website/
https://shagen.mit-license.org/

First Learn, Second Follow, Third " ey

Common sense facts: Base of Culture or only Hear Say?
® One such fact learned the hard way by most of us is:

The native Python dict does preserve insert order.

& ...dict, set and *¥*kwargs (implemented).

= "Preserving the order of **kwargs in a
function” ® so, we now can have our cake and eat it t0o?

© 2017 by under

4

https://en.wikipedia.org/wiki/Reverse_learning
https://stackoverflow.com/questions/613183/sort-a-python-dictionary-by-value/
https://sdrees.gitbooks.io/python-order-is-now-key/content/first-question.html
https://www.python.org/dev/peps/pep-0468/
https://www.python.org/dev/peps/pep-0468/
https://stefan-hagen.website/
https://shagen.mit-license.org/

Question: : "¥¥kwargs order” - Rely on it or not?

— Use cases (from PEP 468):
— print out key:value pairs in CLI output
— map semantic names to column order in a CSV

— serialise attributes and elements in particular
orders in XML

— serialise map keys in particular orders in human
readable formats like JSON and YAML.

© 2017 by under

https://www.python.org/dev/peps/pep-0468/
https://mail.python.org/pipermail/python-dev/2016-September/146329.html
https://stefan-hagen.website/
https://shagen.mit-license.org/

Question: - Rely on it or not?

— The dict type now uses " " representation [...]

— Memory usage between 20% - 25% smaller <«

— The order-preserving aspect [...] considered an
implementation detail and should not be relied ...

— This may change in the future, but it is desired [...]
a few releases before changing the language spec
to mandate order-preserving semantics for all
current and future Python implementations |...] .

© 2017 by under

https://docs.python.org/3.6/whatsnew/3.6.html#new-dict-implementation
http://bugs.python.org/issue27350
https://docs.python.org/3.5/whatsnew/3.5.html
https://stefan-hagen.website/
https://shagen.mit-license.org/

(1/7) © Explore the good news and our bright future

Short interactive session - you're free to ignore &:

Python 3.6.2 (default, Jul 17 201/, 16:44:47)
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> d = {'foo': 1, 'bar': 2, 'baz': 3}
>>> for k, v in d.items():

print(k, "->", v)

For now an implementation detail ;-)
foo -> 1
bar -> 2
baz -> 3

© 2017 by Stefan (dilettant) Hagen under MIT License

https://docs.python.org/3.6/whatsnew/3.6.html
https://stefan-hagen.website/
https://shagen.mit-license.org/

(2/7) Update a key's value

[teration shows, value update preserves key position:

>>> d['foo'] = 42
>>> for k, v in d.items():
print(k, "->", v)

foo -> 42
bar -> 2
baz -> 3

https://docs.python.org/3.6/library/stdtypes.html#dict
https://stefan-hagen.website/
https://shagen.mit-license.org/

(3/7) Delete the key (position now taken from next!)

>>> del d['foo']
>>> for k, v in d.items():
print(k, "->", v)

bar -> 2
baz -> 3

https://docs.python.org/3.6/library/stdtypes.html#dict
https://stefan-hagen.website/
https://shagen.mit-license.org/

(4/7) "Re-Insert” (kind of) removed key with some value

>>> d["foo'] = -1
But now 'foo: -1'is appended (insert order!), so:

>>> for k, v in d.items():
print(k, "->", v)

bar -> 2
baz -> 3
foo -> -1

10

https://docs.python.org/3.6/library/stdtypes.html#dict
https://stefan-hagen.website/
https://shagen.mit-license.org/

(5/7) Short dirty check to show off PEP 468

>>> # Remember: **d — bar=2, baz=3, foo=-1
>>> print(¥*¥d) # HACK A DID ACK

Traceback (most recent call last):
File '"<stdin>", line 1, in <module>

TypeError: 'bar' is an invalid keyword argument for this function
NAAN

— & Order preserved; Python 2.7.13 on OS X raises:

Traceback (most recent call last):
File '"<stdin>", line 1, in <module>

TypeError: 'baz' is an invalid keyword argument for this function
VAVAVAN

© 2017 by Stefan (dilettant) Hagen under MIT License

11

https://www.python.org/dev/peps/pep-0468/
https://docs.python.org/2.7/whatsnew/2.7.html
https://stefan-hagen.website/
https://shagen.mit-license.org/

(6/7) Some other function exposing PEP 468 behavior

>>> def a stack(pos, *args, **kwargs):
"""Now for something completely different ..."""
for k in reversed(tuple(kwargs)::
print(k, "->", kwargs[k])

>>> # Remember: **d — bar=2, baz=3, foo=-1
>>> a stack(True, **d)

foo -> -1
baz -> 3
bar -> 2

© 2017 by Stefan (dilettant) Hagen under MIT License 12

https://www.python.org/dev/peps/pep-0468/
https://stefan-hagen.website/
https://shagen.mit-license.org/

(7/7) The builtin set now also preserves order

>>> # Remember: **d — bar=2, baz=3, foo=-1
>>> s = set(d.keys()) # Using set constructor
>>> print(tuple(s))

('bar', 'baz', 'foo') # Also an implementation detail ;-)

>>> s = {'bar', 'baz', 'foo'} # Fresh set literal
>>> print(tuple(s))

('bar', 'baz', 'foo') # Dito implementation detail ;-)

© 2017 by Stefan (dilettant) Hagen under MIT License 13

https://docs.python.org/3.6/library/stdtypes.html#set
https://stefan-hagen.website/
https://shagen.mit-license.org/

What gives?

... still not clear what this means,

but will notice - as time goes by ...

Any questions?

Thoughts?

-- Thanks!

© 2017 by Stefan (dilettant) Hagen under MIT License

https://stackoverflow.com/questions/613183/sort-a-python-dictionary-by-value/39424969#39424969
https://stefan-hagen.website/
https://shagen.mit-license.org/

